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Interaction of capillary waves with
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waves in two surface dimensions
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In Part 1 of this work we presented a new mathematical formulation for numerical
investigation of capillary wave dynamics. This permitted calculations to be readily
performed on a desktop computer. Applications given were primarily to waves in
one surface dimension. In Part 2 we describe further applications to waves in two
surface dimensions and also to waves in shallow water (not, however, shallow for the
capillary waves). Wavenumber–frequency spectra for wind waves are calculated. As
was observed in tank experiments by Hara et al. (1997), our calculations show both a
frequency spread and a frequency up-shifting which suggests that capillary waves are
‘dragged along’ by longer waves. Fine-scale roughness near wind wave crests shows a
transitory nature, changing with the wave pattern. We discuss implications of this for
microwave remote sensing. The propagation of short gravity waves in shallow water
is studied. As these waves develop bore-like forward faces, generation of parasitic
capillary waves is observed. Generation rates for these are substantially greater than
observed for waves in deep water.

1. Introduction
In Part 1 of this work (Watson & Buchsbaum 1996) a model was introduced

for investigating capillary wave interactions with longer waves. The Hamiltonian
formulation of Zakharov (1968), Miles (1977), and Milder (1990) for irrotational flow
was used. A modification of the canonical transformation theory of Creamer et al.
(1989) was developed to substantially simplify numerical calculations. This permits
the calculations described to be done on a desktop computer. Viscous dissipation was
introduced into the theory as an option that could be turned on or off.

The applications presented in Part 1 were principally to wave systems in one (sur-
face) dimension. The role of three-wave and four-wave resonances was investigated.
It was found that in general off-resonance interactions are of major importance.

The radiation of parasitic capillary waves was described by Ebuchi, Kawamura &
Toba (1987), Perlin, Lin & Ting (1993), and Longuet-Higgins (1995). Calculations of
these phenomena were presented in Part 1.

The generation of capillary waves from a system of wind-driven waves was in-
vestigated. It was found that nonlinear interactions extended to shorter wavelengths
the spectra of waves generated directly by the wind. The calculation of this effect
was motivated by the observations of Cox (1958), Jähne & Riemer (1990), Klinke &
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Jähne (1992), Zhang & Cox (1994), and Zhang (1995). The cut-off of the spectra at
wavelengths in the range 1

3
to 1

2
cm observed by these authors was also seen in the

calculations reported in Part 1.
Calculations of the rate at which capillary waves are generated by wind waves

were compared to similar calculations (Watson & McBride 1993) using the Hassel-
mann (1968) radiative transport model. For the cases studied, the Hasselmann model
underestimated the generation rates by factors from 2 to 10. This discrepancy was in-
terpreted as due to off-resonance interactions, which are neglected in the Hasselmann
theory.

In this paper we present further studies of capillary wave interactions, principally to
wave systems in two surface dimensions. Relaxation rates and wavenumber–frequency
spectra are investigated. The calculated frequency spread and frequency up-shifting
are similar to the observations of Hara, Bock & Donelan (1997). Capillary wave
roughness on wind wave surfaces is also described and implications for microwave
remote sensing are discussed.

In § 5 we extend our previous studies to investigate parasitic capillary generation by
waves in shallow water (not shallow to the parasitic capillaries, however). Freilich &
Guza (1984) have observed that the role of three-wave interactions for gravity waves
is greatly enhanced in shallow water. We confirm this effect, seeing strong parasitic
capillary wave generation from waves with slopes as small as 1

5
that required for

waves in deep water.

2. The wave model
The model used here was described in detail in Part 1. Consequently, we shall now

give this only a brief review.
Irrotational, inviscid flow is described by a velocity potential Φ(x, z). In the rect-

angular coordinate system used here the undisturbed water surface is at z = 0, with
points above this surface corresponding to z > 0. A horizontal vector is written as
x = (x, y). The vertical displacement of the water surface at x is ζ(x). The velocity
potential on the water surface is

φ(x) ≡ Φ(x, ζ(x)). (2.1)

Zakharov (1968), Miles (1977), and Watson, West & Cohen (1976) have noted that
φ and ζ are cononical variables in a Hamiltonian formulation of the wave motion.
The Hamiltonian method was used in Part 1, following the work of Milder (1990).
Although of course not necessary, the use of Hamilton’s equations is a convenience
for analytical developments.

As in Part 1, the ‘ocean’ is confined to a rectangular box of dimensions X and
Y , with area A0 = XY . The field amplitudes are Fourier expanded in this area. For
example, the vertical displacement of the water surface is then

ζ(x, t) =
∑
k

1/(2k)[ake
i(k·x−ωkt) + c.c.]. (2.2)

Here the discrete wavenumber vectors are of the form

kx = nxk0x, ky = nyk0y, nx, ny integers,

k0x =
2π

X
, k0y =

2π

Y
.

 (2.3)
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The angular frequency for a linear wave of wavenumber k is

ωk = [k(g + τk2)]1/2. (2.4)

Here g is the acceleration due to gravity and

τ = 7.5× 10−5 m3 s−1 (2.5)

represents a nominal value for the surface tension parameter.
The quantities ak in (2.2) represent slope amplitudes. For linear inviscid waves

these are time independent. When nonlinear interactions are taken into account, they
satisfy the first-order coupled differential equations

dak
dt

+ ε1[βak] = T3(a, k) . . . . (2.6)

The ‘three-wave’ term here is

T3(a; k) = − i

8Vk

∑
l, p

k

lp
{δk−l−pΓ (k, p, l)alape

i(ωk−ωl−ωp)t + 2δk+l−pΓ (p, k, l)apa
∗
l

×ei(ωk+ωl−ωp)t + δk+l+ph(l, p, k)a∗l a
∗
pe

i(ωk+ωl+ωp)t}. (2.7)

Here Vk is the phase velocity of a linear wave of wavenumber k and the coefficients
Γ and h are given in Part 1 (see also (A 10) in the Appendix). The quantity β above
describes viscous damping,

β = 2νk2, (2.8)

where ν is the kinematic viscosity, given here a nominal value of 1.3× 10−6 m2 s−1.†
The coefficient ε1 in (2.6) is to be taken as zero or unity, depending upon whether
we wish to keep damping in our calculations. When ε1 = 0, energy is conserved and
this provides a useful check of numerical accuracy. With ε1 = 1, the maximum energy
loss encountered has been no more than 10%. Most of our calculations have been
repeated with and without damping. The calculations presented in §§ 3 and 4 include
damping.

The term T3 in (2.6) is the first of an infinite series of increasing order in the
a (Milder 1990). The ‘four-wave’ term T4 was included in Part 1, where extensive
calculations were made, with and without, this term. For wave systems with small
slopes, such as the wind waves considered in this paper, relatively little effect was
seen from the four-wave term (see figures 1 and 5 and table 2 of Part 1). For steeper
waves, effects from the four-wave term could be identified (see figure 3 of Part 1). In
this work we shall not be concerned with waves of large slope and shall neglect the
four-wave term.

Since equations (2.6) must be integrated numerically, it is necessary to choose a
maximum wavenumber cut-off

kc =
2π

λc
. (2.9)

Then,

k 6 kc. (2.10)

The observations of Jähne & Riemer (1990) and of Zhang & Cox (1994) suggest that
wind-driven capillary spectra have very little energy for wavelengths less than 1

2
to

2
3

cm. We shall therefore choose λc in this range, except when we discuss parasitic

† The introduction of viscous damping into the Hamiltonian theory was described in Part 1.
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Figure 1. Dimensionless wave spectrum (3.13) calculated at time t = 0.225 s for
the input data (3.14). Units for k are rad m−1.

capillary waves in § 5. Neglecting waves shorter than this was seen in Part 1 to have
negligible effect on waves of 1

2
cm wavelength and longer.

We choose X, Y , and λc such that

Lx =
X

λc
, Ly =

Y

λc
(2.11)

are integers. We shall consider the positive x-axis as the principal direction of
propagation, restricting the wavenumber range (2.3) to

1 6 nx 6Mx = Lx, −My 6 ny 6My, (2.12)

where My 6 Ly . The wavenumbers in (2.6) thus form a finite, discrete set D.
A triad resonance occurs when for a given term in (2.7) the following condition is

satisfied:

f± = |ωk ± ωl − ωp| < εres. (2.13)

Here εres is ‘small’ – a precise criterion for ‘smallness’ is not required for our present
numerical calculations. It was noted in Part 1 that a necessary condition for a triad
resonance to occur is that all three wavenumbers (k, l, p) lie in a wavenumber domain
DR . When DR is a subset of the full wavenumber domain D a canonical transformation
technique can be used to integrate (2.6). When this technique is used the only terms
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appearing in (2.7) are those for which all three wavenumbers lie in DR . The use of the
canonical transformation has been found to reduce computation times by as much
as one or two orders of magnitude. The technique used is a modification of that
developed by Creamer et al. (1989) and is described in detail in Part 1.

In this work equations (2.6) are initialized by assigning numerical values to the
slope amplitudes at time t = 0. As in Part 1, when considering wind waves, we
assign initial magnitudes using the Donelan–Pierson (1987) spectrum, with a random
number generator to provide phases. For other applications specific initial amplitudes
may be used.

The numerical calculations reported here were done in double precision on a
Macintosh 8500/180 computer. Individual integrations of (2.6) required as much as
2 to 20 minutes.†

3. Relaxation rates and power spectra
For the applications of this section we consider wind waves. As described above, for

a given wind speed U10 the slope amplitudes in (2.6) are initialized with random phases
and magnitudes obtained from the Donelan–Pierson (1987) spectrum. Ensembles are
generated by repeating a given calculation, changing only the initial phases. Ensembles
consisting of 150 runs were used in this work. Comparisons were made of results
using ensembles of 50, 100, and 150 runs. Little difference was seen in the 100 and
150 element ensembles. For 50 run ensembles the weak outlying areas in the power
spectra showed some statistical variations.

The triad interactions described by (2.6) are strong and result in fast capillary
response times. We shall illustrate this with both auto-correlation decay rates and
power spectra.

The auto-correlation function for surface displacement is

C(t; r, τ) = 〈ζ(x+ r/2, t+ τ/2)ζ(x− r/2, t− τ/2)〉, (3.1)

where 〈· · ·〉 represents an ensemble average. Because of the phase averaging, we do
not except C to depend on x. We see from (3.1) that

C(t; r, τ) = C(t;−r,−τ). (3.2)

Also, because of the ensemble average over phases, (3.1) takes the form

C(t; r, τ) =
∑
p

1

4p2
[Gp(τ)e

i(p·r−ωpτ) + c.c.], (3.3)

where

Gp(τ) = 〈ap ∗ (t− τ/2)ap(t+ τ/2)〉 (3.4)

and

Gp(τ) = Gp ∗ (−τ). (3.5)

Since we are integrating over time with specific initial conditions, we may expect the
G to depend also on t.

† Since completing the calculations described here, a coding modification has been found which
can significantly reduce computation times.
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The power spectrum of the wave system is

P̂ (k, Ω) =

∫
d2r

A0

∫
dτ

2π
e−i(k·r−Ωt)C(t; r, τ)

= P̂ ∗(k, Ω) = P̂ (−k,−Ω). (3.6)

Normalized to a continuous wavenumber distribution, this spectrum is

P (k, Ω) =
1

k0xk0y

P̂ (k, Ω), (3.7)

so ∫
d2k dΩ P (k, Ω) = 〈ζ2〉. (3.8)

Because of the restriction (2.12) Gp(τ) = 0 for px < 0. Thus, if kx > 0, we have

P (k, Ω) =
1

4k2k0xk0y

∫
dτ

2π
ei(Ω−ωk)τGk(τ). (3.9)

We can restrict ourselves to the case Ω > 0 because of the rapidly oscillating
exponential. For the domain kx < 0, Ω< 0 and ky changed in sign, we just duplicate
(3.9) (see (3.6)). We therefore lose no information if we restrict ourselves to the domain
kx > 0, Ω > 0 and use just (3.9), which should then be multiplied by a factor of 2 if
we wish to preserve the normalization (3.8).

The autocorrelation function G may be expressed as

Gk(τ) = Rk(τ) + iIk(τ), (3.10)

where Rk and Ik are real, and

Rk(0) = 〈|ak|2〉, Ik(0) = 0. (3.11)

Numerical integration of (2.6) extends over the time interval 06 t6T . The time
variables T and t (t appearing implicitly in (3.10)) will be chosen as

T = 0.35 s, t = 0.225 s. (3.12)

The dimensionless power spectrum in wavenumber space is

B(k) = 2k4

∫
dΩ P (k, Ω)

=
k2

2k0xk0y

Rk(0). (3.13)

The factor of 2 is introduced here to account for the domain kx < 0, as mentioned
in connection with (3.9). It was seen in Part 1 that the spectrum B(k) has a ‘cut-off’
at wavenumbers λ ≈ 0.5 cm, consistent with the observations of Cox (1958), Jähne &
Riemer (1990), and Zhang & Cox (1994), and the calculations of Federov & Melville
(1998).

We now illustrate the above with our first example:

U10 = 4 m s−1, X = Y = 20 cm, Mx = 30, My = 10. (3.14)

We note that for U10 = 4 m s−1, the Donelan–Pierson (1987) spectrum has a sharp
cut-off at k≈ 440 rad m−1 or λ≈ 1.5 cm. Shorter-wavelength waves are generated by
the dynamics.
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Figure 2. Decay time, shown by solid line, for the auto-correlation function Rk to fall to one-half
its initial value at zero lag. Data are given by (3.14) and output is on line ky = 0. The dashed line
shows the linear wave period.
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Figure 3. The correlation functions Rk (solid line) and Ik (dashed line) are shown for the data
(3.14) and kx = 785 rad m−1, ky = 0. These quantities have here been normalized by Rk(0).

In figure 1 we show the spectrum B (3.13) for the parameters (3.14) at time
t = 0.225 s. The spectrum is quite similar at the final time T = 0.35 s.

For the parameters (3.14) and for ky = 0, we show in figure 2 the decay time as a
function of kx (the solid curve) for Rk to fall to half its value at τ = 0. Also shown
is the linear wave period (as the dashed curve). For wavelengths <2.5 cm the decay
time is comparable to, or less, than the linear wave period. In figure 3 we illustrate
the correlation functions Rk (solid curve) and Ik (dashed curve) as functions of lag
time τ for a wave of 0.8 cm wavelength. The correlation functions in figure 3 have
been normalized by Rk(0).

These short relaxation times illustrate the very significant effect on capillary waves
of nonlinear interactions with longer waves. They also illustrate why it was found
in Part 1 that interactions far off frequency resonance are important. Surface wave
relaxation times have played a significant role in the analysis of radar observations
of surface wave modulation effects. We shall discuss this in more detail in § 4.

To evaluate the integral (3.9) we arbitrarily extrapolate to times |τ| > T0 by setting

Gk(τ) = Gk(T0) exp [−2(|τ| − T0)], |τ| > T0 ≡ 0.25 s.

This introduces a fine-scale spectral smoothing which is not significant for our spectra.
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Figure 4. The frequency–wavenumber spectrum (3.15). The spectral intensity is shown as
a function of the frequency difference (Ω − ωk) and the wavenumber k along the line ky = 0.

For displaying the wavenumber–frequency spectrum the strong variation of B with
k seen in figure 1 suggests using the normalized spectrum

S(kx, ky, Ω) = 10 + 10 log

(
2P (k, Ω)k4

B(k)

)
. (3.15)

(The factor of 2 here compensates for the corresponding factor in (3.13).) To show
(3.15) we use an intensity plot with the frequency difference (Ω−ωk) as ordinate and
the wavenumber k (along a straight line in k-space) as abscissa. Nearest-neighbour
wavenumber smoothing is used in the plots.

In figure 4 we show the spectrum (3.15) for the case (3.14) and along the line
ky = 0. For k < 500 rad m−1 there is strong admixture of Donelan–Pierson waves and
the linear wave dispersion relation is evident. For k < 600 rad m−1 the spectrum is
predominantly shifted to (Ω−ωk)> 0, indicating that the short waves are dynamically
coupled to longer, faster propagating waves. There is also seen a downshift in
frequency at the higher wavenumbers. Such spectral broadening is expected to result
from advection by the orbital current of the longer waves.

Hara et al. (1997, to henceforth be referenced as HBD) have evaluated k–Ω
spectra from their observations of wind-driven waves in a tank. The fetch for their
observations was 13 m. The tank was 0.76 m wide and 0.25 m deep. They resolved
waves in the wavenumber range 20 < k < 800 rad m−1. Their experiment that seems to
best match the conditions of our calculation was that with a wind friction velocity of
0.27 m s−1. In this case the spectral peak was at a wavelength λ = 12 cm (whereas our
calculation, although having a lower wind velocity, has a spectral peak at λ = 20 cm).
It was necessary for HBD to account for an assumed surface current drift of 0.05 m s−1.
Such a current does not occur for our calculation.

We consider first the HBD case for which ky = 0, as in our figure 4. For k >
500 rad m−1 they observed spectral spreading, which they attribute to longer-wave
orbital current advection. We also see this. The two ridges in figure 4 at a frequency
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Figure 5. The function (3.16) is shown as a function of k for wavelengths λ = 5 cm
(solid curve), 10 cm (long-dashed curve), and 20 cm (short-dashed curve).

shift of ±50 rad s−1 near k = 900 rad m−1 are consistent with our dominant wave of
20 cm wavelength having a slope of approximately 0.1.

For k < 500 rad m−1 HBD see two bands. One corresponds to the linear wave
dispersion relation. This is seen in our figure 4 along the axis of zero frequency shift.
The second band observed by HBD is shifted to frequencies higher than the linear
wave frequency. They interpret this as due to short waves ‘bound’ to longer waves.
They observe that for binding to long waves of wavelength λ and phase velocity c(λ)
the frequency shift should be

Ωdif = c(λ)k − ωk. (3.16)

HBD conclude that their observed frequency shift is consistent with (3.16) for
λ = 12 cm, or ‘long waves’ at the spectral peak.

In figure 5 we show a plot of the frequency shift (3.16) for long-wave wavelengths
of 5 cm (solid curve), 10 cm (long dash curve), and 20 cm (short dash curve). The
location of the spectral ridge in figure 4 best matches the curve for λ = 5 cm in
figure 5. The curve for λ = 20 cm, corresponding to our spectral peak, is displaced
well above the ridge in figure 4. If we accept the HBD criterion for waves to be
‘bound’, we conclude that we have a strong admixture of shorter capillary waves
‘bound’ to longer waves in the 5–10 cm wavelength range. These waves are somewhat
shorter than those found by HBD. We do not have an explanation of this, but recall
that their wave spectrum differs from ours and that they appear to have a significant
surface drift.

We have noted that the longest wavelength wave contributing to figure 4 is
λ = 20 cm. For an ‘ocean’ with large fetch waves near the spectral peak at k ≈ g/U2

10

will modify the capillary spectrum. We can take account of this, as described in Part
1 (§ 5.3). To do this the area A0 = XY is considered embedded in a much larger area
and the canonical transformation technique is used to integrate (2.6) in this large
area. The resulting spectrum is shown in figure 6. The spectrum of figure 4 is seen
to be much broadened by the orbital currents of much longer waves. The up-shifting
of the wave frequency can be seen in figure 6, but this is dominated by the general
spectral broadening.

In figure 7 we show the spectrum (3.15) along the 45◦ line kx = ky . The up-
shifting of wave frequency above the linear wave dispersion line is again seen, but
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Figure 6. The frequency–wavenumber spectrum, as in figure 4, except that
interaction is extended to the full wind-wave spectrum.
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Figure 7. The frequency–wavenumber spectrum is plotted as in figure 4,
but along the curve ky = kx.

is less pronounced, and the linear wave dispersion relation is more evident. Similar
observations were made by HBD from their data along the 45◦ line in k-space.

We consider a second example, which differs from (3.14) only in that the wind
speed is increased:

U10 = 6 m s−1, X = Y = 20 cm, Mx = 30, My = 10. (3.17)

For this wind speed the Donelan–Pierson (1987) cut-off is at k ≈ 730 rad m−1, or
λ≈ 0.9 cm.
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Figure 8. The decay time and linear wave period as in figure 2, except that
the wind speed is 6 m s−1 (see (3.17)).
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Figure 9. The frequency–wavenumber spectrum as in figure 4, except that
the wind speed is 6 m s−1 (see (3.17)).

In figure 8 we show the decay time (solid line) for this second example and the
linear wave period (dashed line). The decay time is very similar to that of figure 2.
The frequency–wavenumber spectrum for ky = 0 is shown in figure 9. This does not
appear to be significantly different from that of figure 4. Using the HBD interpretation
for ‘bound’ waves, we again conclude that the ‘binding’ is to waves in the 5–10 cm
wavelength range.

4. Modulation of short waves by longer waves
In the last Section we saw that the capillary frequency spectrum was up-shifted,

indicating a tendency for the shorter waves to be ‘dragged along’ by the longer waves.
The phase speed was not high enough, however, to imply that these short waves were
‘bound’ to the longest waves (λ = 20 cm) at the spectral peak. In this Section we show
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Figure 10. The surface displacement in cm (heavy line) and twice the magnitude of the wave slope
(light line) as a function of position x. The displacement is filtered, the filter passing wavelengths
only in the range 32 > λ > 2 cm. The slope is also filtered, the filter passing wavelengths only in
the range 2 > λ > 0.4 cm. (a) time t = 0, y = 8 cm; (b) t = 0.2 s, y = 3 cm; (c) t = 0.2 s, y = 8 cm;
(d) t = 0.2 s, y = 13 cm. The wind speed is 4 m s−1.

that although they may not be bound, the capillary waves are strongly modulated by
the longer waves and that this has implications for microwave remote sensing.

The first specific example that we shall use to demonstrate this begins at time t = 0
with a specific realization of the linear wave field obtained from the Donelan–Pierson
(1987) spectrum and the choice of parameters

U10 = 4 m s−1, X = 32 cm, Y = 16 cm, Mx = 80, My = 6, 0 6 t 6 T = 1 s

(4.1)

To display the output we show the wave displacement ζ filtered to include only
wavelengths in the range 32 > λ > 2 cm. The slope is also filtered to include only
wavelengths in the range 2 > λ > 0.4 cm. In figures 10 and 11 the surface displacement
in cm is shown as the heavy line. The light line shows the magnitude of the slope
multiplied by a factor of 2 (in order to more easily read the scale):

2
√

(∇ζ)2.

Displacement and slope for the conditions (4.1) are shown in figure 10. In figure
10(a) we show the Donelan–Pierson (1987) input at time t = 0 along a cut in the (x, y)-
plane at y = 8 cm. We note that there is little wave energy in the range 2 > λ > 0.4 cm.
Figure 10(b, c, d) shows the displacement and slope at t = 0.2 s along cuts at y = 3, 8,
and 13 cm, respectively. Bursts of capillary excitation are evident. These bursts are
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Figure 11. Same as figure 10, except that the wind speed is 6 m s−1 and the time for
(b, c, d) is t = 0.4 s.

localized in x and y. They are transient phenomena and appear and disappear over
the 1 s interval of integration of (2.6). In figure 10 the bursts seem to be generated
at wave crests having large curvature and they seem to be shifted somewhat to the
forward face of the waves.

The steepest slopes of the curves for displacement in figure 10 are in the range
0.1 to 0.2. This is somewhat less than that which seemed to be required to produce
the shorter parasitic capillary waves described in Part 1 and in the work of Longuet-
Higgins (1996) and Federov, Melville & Rozenberg (1998).

For the calculations shown in figure 11 we choose the wind speed to be U10 =
6 m s−1, otherwise keeping the conditions (4.1). In figure 11(a) we see the Donelan–
Pierson (1987) input at time t = 0 along the cut at y = 8 cm. The level of excitation of
waves in the range 2 > λ > 0.4 cm is greater than was seen in figure 10(a) because of
the increased wind speed. Since this is one realization of a Gaussian system the slope
amplitude variations seen in figure 11(a) are not correlated with the longer waves. In
figure 11(b, c, d) we see the filtered surface displacement and slope at time t = 0.4 s
along cuts at y = 3, 8, 13 cm, respectively. We again see bursts of capillary wave
exicitation. These are similar to those seen for the case of 4 m s−1 wind speed. The
amplitudes are now somewhat higher and the bursts are less clearly shifted forward
of the crests.

The two data samples shown in figures 10 and 11 were chosen to illustrate that the
relation between capillary bursts and wave profile is variable. Over the 1 s integration
interval (particularly at U10 = 4 m s−1) there were periods of weak burst activity.

Capillary waves in the range 2> λ> 0.4 cm act as Bragg scatterers for X-band
and higher-frequency microwave scattering. Excitation and relaxation times have
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played an important role in the analysis of observations of surface wave modulation
effects. In both the JOWIP (see, for example, Hughes & Dawson 1988) and SARSEX
(see, for example, Gasparovic, Apel & Kasischke 1989) experiments detailed studies
of the modulation of surface waves by internal waves were made with both in
situ measurements and radar observations at L-band (approximately 1 GHz) and at
X-band (approximately 10 GHz). Agreement between observations and theory was
deemed satisfactory for the L-band data (Bragg waves of about 30 cm wavelength).
The observed X-band modulation was comparable to that at L-band and about
an order of magnitude larger than predicted by calculations (Caponi et al. 1988
and Thompson, Gotwols & Sterner 1988). This discrepancy resulted from the short
relaxation time expected for the X-band Bragg waves (our even shorter relaxation
times shown in figures 2 and 8 would increase this discrepancy).

To explain the X-band discrepancy Caponi et al. (1988) and Thompson et al.
(1988) suggested the ‘long-wave effect’ that had been proposed earlier by Alpers,
Ross & Rufenach (1981). This effect was thought to cause the short Bragg waves to
be modulated by longer waves, which in turn were modulated by the internal wave
surface currents. An adequate theory of this was not available, however.

Our present model of wave interactions permits us to carry out a calculation of the
long-wave effect. To do this we shall suppose the system (4.1) to be illuminated by a
radar, as in a wave tank experiment.† For a given realization of the initial waves we
can calculate radar backscatter when we assign different levels of modulation to the
longer waves.

The backscatter amplitude fR for the electromagnetic wave can be written in the
form‡

fR = C

∫
T (x− x0)e

−iQ·xζ(x) d2x. (4.2)

Here Q is the wavenumber of the Bragg wave, assumed to be parallel to the x-axis,
T represents the illumination pattern of the radar beam on the water surface, and C
is a factor depending on incidence angle, polarization, etc.

For T we shall assume a simple rectangular pattern:

T (x) = 1 for 8 < x < 24,−8 < y < 8

= 0 otherwise. (4.3)

The illuminated area is therefore

AR = (16)2 cm2. (4.4)

The radar cross-section per unit area is then

Σ =

〈
4π

AR
|fR|2

〉
. (4.5)

An average over a sequence of observations is implied here.
We shall use a simple model to represent modulation. For a given realization of

the initial wave system we shall apply a sequence of modulation factors that multiply
all wave amplitudes in the range 32> λ> 2 cm by a factor η. Shorter waves are left

† To model radar scattering in a larger area, we would use the canonical transformation technique
as was described in connection with figure 6.
‡ The expression (4.2) is equivalent to that used, for example, by Donelan & Pierson (1987) when

large amplitude waves of greater wavelength are not present. In this case the ‘two-scale’ model
reduces to (4.2).
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Figure 12. The radar modulation (4.6) is shown as a function of the long-wave modulation factor
η for Bragg wavelengths of 2 cm (solid curve), 4

3
cm (dashed curve) and 1 cm (dotted curve).

unchanged. We then integrate (2.6) and average over the interval 0<t<T = 1 s for
each of the sequence of values for η, beginning with η = 1. The radar modulation is
then

MR(η) =
Σ(η)

Σ(1)
. (4.6)

In figure 12 we show the modulation (4.6) as a function of η for Bragg wavelengths
of 1, 4/3, and 2 cm. We see, indeed, a very definite long-wave effect. The Bragg waves
are significantly modulated by the modulation applied to the longer waves.

A detailed analysis of radar observations of surface wave modulation is beyond
our present scope. We have presented the above idealized calculation to show that
the long-wave effect, as proposed by Alpers et al. (1981), is real and is significant for
understanding the response of capillary waves to surface wave modulation. (Note,
however, that for their calculation Alpers et al. (1981) used the Hasselmann (1968)
theory. This technique is inadequate for this purpose and underestimated the effect.)

5. Waves in shallow water
In this Section we investigate the excitation of capillary waves by waves in shallow

water. Freilich & Guza (1984) have observed that the role of triad interactions for
gravity waves is greatly enhanced when the water is shallow. Their studies suggest
that capillary wave excitation may also be sensitive to water depth.

The Hamiltonian formulation of Miles (1977) is valid for water of finite depth, so
modification of the deep water theory is straightforward. The linear wave dispersion
relation is now

ωk = [k(g + τk2) tanh(kD)]1/2, (5.1)

where D is the water depth. Equations (2.6) and (2.7) are unchanged in form, except
for a modification of the coefficients Γ and h and for the use of (5.1). This is described
in the Appendix.

In this Section we shall consider waves in only one surface dimension. For our
examples, we choose the cut-off wavelength to be

λc = 0.2 cm, (5.2)
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Figure 13. Displacement in cm (heavy line) and filtered slope (light line) in the range 1> λ> 0.2 cm.
The water depth is 1 cm. (a) The initial sine wave slope is 0.1, and the time is t = 0.3 s, (b) the initial
sine wave slope is 0.075 and the time is t = 0.5 s.

with a fetch

X = 10 cm. (5.3)

To specify the mode set (2.12) we choose

Mx = Lx = 50, My = 0. (5.4)

The Y -scale need not be specified for calculations in one dimension, but is conve-
niently chosen as Y = 1.

We begin the calculation at time t = 0 with a pure sine wave of wavelength
10 cm. The wave amplitude ζ and slope are evaluated for subsequent times. The slope
is output through a filter that passes only waves in the range 1> λ> 0.2 cm. The
calculations were done with and without dissipation (i.e. ε1 = 0 or ε1 = 1 in (2.6)).
The effect of dissipation was negligible in our plotted results, so we show these only
for the case of no dissipation.

For our first example the initial slope of the sine wave was 0.1 and the water depth
D = 1 cm. We display the wave amplitude with a heavy line and the slope with a
light line in figure 13(a) at the time t = 0.3 s. The sine wave has developed a bore-like
forward face as expected for such a shallow water wave. Short-wavelength capillary
waves have developed on the forward face of the longer wave.

For a 10 cm wave in deep water the minimum required slope for such parasitic
capillary wave generation is about 0.25 (Longuet-Higgins 1995; Part 1; Federov et al.
1998). This confirms the expected enhanced generation of capillary waves in shallow
water. The dominant wavelength for the capillary waves in figure 13 is approximately
0.5 cm, comparable to the 0.4 cm wavelength seen by Federov & Melville (1998) for
10 cm deep water waves.

For our second example we again take D = 1 cm and an initial sine wave slope of
0.075. The wave displacement and filtered slope profiles are shown at time t = 0.5 s
in figure 13(b). Because of the later time here, the capillary wave system is more fully
developed than was the case in figure 13(a). The dominant capillary wavelength is
approximately 0.5 cm, as before. For our third example (not shown) with an initial
sine wave of slope 0.05 and at time 0.5 s, the parasitic capillary waves are weak, with
slopes of about 0.01.

Repeating the above calculations for a depth of 2 cm showed capillary wave
generation at a reduced rate. For a depth of 5 cm no capillary wave generation was
seen for the small initial slopes assumed here.
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6. Conclusions
We have provided a formulation of the equations for irrotational wave dynamics

which permits one to make rather elaborate calculations on a desktop computer.
Using this model, we have investigated the development of wind-wave spectra to
short wavelengths. A ‘cut-off’ for wavelengths of less than about 1

2
cm was observed.

The calculated wavenumber–frequency spectra for wind waves at short wavelengths
shows both a spectral broadening and a frequency up-shift, as was observed in tank
experiments by Hara et al. (1997). Calculations of surface roughness for wind waves
show that this is related to the instantaneous surface profile of the longer waves. The
level of fine-scale roughness is sensitive to the amplitude of the longer waves, which
has implications for microwave remote sensing.

The role of three-wave and four-wave resonances has been studied. For the case of
capillary wave interactions the four-wave interactions play a secondary role. However,
off-resonance interactions were found to be quite important. This phenomenon was
interpreted as limiting the accuracy of kinetic equations that keep only interactions
at exact resonance.

We have demonstrated that effects of finite depth can significantly enhance the gen-
eration of parasitic capillary waves by longer waves. This investigation was motivated
by the work of Freilich & Guza (1984). The mechanism by which the enhancement
occurs is not known to us, however.

Partial support for this work was received from the Office of Naval Research Grant
N000014-94-1-0013.

Appendix. Wave equations for shallow water
The analysis for waves in deep water, as given in Part 1, needs only minor

modification for water of finite depth. We briefly outline this here.
For water of depth D the velocity potential has the form

Φ(x, z) =
∑
k

C(k, t) cosh [k(z + D)]eik·x, (A 1)

where C is a Fourier coefficient. The potential φ(x, t) at the surface is defined by
(2.1). The Hamiltonian is given, for example, by Miles (1977). The expansion of the
Hamiltonian in terms of increasing order in the field variables is described by Milder
(1990). To third order the Hamiltonian has the form

H = H0 +H1, (A 2)

where

H0 = 1
2

∫
[φk̂Λφ+ gζ2 + τ(∇ζ)2] d2x,

H1 = 1
2

∫
ζ[(∇φ)2 − (Λk̂φ)2] d2x.

 (A 3)

Here k̂ is the operator satisfying

k̂eik·x = keik·x (A 4)

and

Λ = tanh (Dk̂). (A 5)
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To obtain the equations of motion for the mode amplitudes we expand φ and ζ in
terms of the action amplitudes bk (see Part 1 for details):

φ(x, t) =
∑
k

(µk/(2A0))
1/2[bke

ik·x + c.c.],

ζ(x, t) =
∑

i/(2A0µk)
1/2[bke

ik·x − c.c.].

 (A 6)

Here A0 = XY and

µk = (g + τk2)/ωk. (A 7)

The equations of motion are (see (2.14) of Part 1)

ḃk = −i
∂H

∂b∗k
. (A 8)

We can express these equations in terms of the slope amplitudes ak using the relation
(see (2.19) of Part 1)

bk = −i(A0µk/2)1/2ake
−iωkt/k. (A 9)

The equations of motion (2.6) are unchanged in form, except that now the coeffi-
cients Γ and h are modified. Only Γ is needed here, which now takes the form

Γ (k, p, l) = (ωkωp)/(kp)[k · p/(ΛkΛp)− kp] + (ωkωl)/(kl)[k · l/(ΛkΛl)− kl]
+(ωpωl)/(pl)[p · l/(ΛpΛl) + pl]. (A 10)

Here Λk = tanh (kD), etc.
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